Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster
نویسندگان
چکیده
Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.
منابع مشابه
Induction of two cytochrome P450 genes, Cyp6a2 and Cyp6a8, of Drosophila melanogaster by caffeine in adult flies and in cell culture.
To examine whether caffeine, the most widely used xenobiotic compound, would induce insect cytochrome P450 or CYP gene expression, upstream DNA fragments of Cyp6a2 (0.12, 0.26, 0.52 and 0.98-kb) and Cyp6a8 (0.06, 0.1, 0.2, 0.5 and 0.8-kb) genes of Drosophila melanogaster were individually fused to the firefly luciferase (luc) reporter gene. Promoter activities of these constructs were examined ...
متن کاملConcentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)
Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...
متن کاملCaffeine as a marker substrate for testing cytochrome P450 activity in human and rat.
The current knowledge on the involvement of cytochrome P450 (P450, CYP) isoforms in the metabolism of caffeine in rat and human liver is reviewed. Attention is also paid to species- and concentration-dependent metabolism of caffeine. Finally, we discuss the P450-mediated metabolism of caffeine in relation to coffee addiction and drug interactions. Due to its safety, favorable pharmacokinetic pr...
متن کاملTranscriptome Analysis of Drosophila melanogaster Third Instar Larval Ring Glands Points to Novel Functions and Uncovers a Cytochrome p450 Required for Development
In Drosophila melanogaster larvae, the ring gland (RG) is a control center that orchestrates major developmental transitions. It is a composite organ, consisting of the prothoracic gland, the corpus allatum, and the corpora cardiaca, each of which synthesizes and secretes a different hormone. Until now, the RG's broader developmental roles beyond endocrine secretion have not been explored. RNA ...
متن کاملToxicological Evaluation of a New Lepidopteran Insecticide, Flubendiamide, in Non-Target Drosophila melanogaster Meigen (Diptera: Drosophilidae)
Background: Flubendiamide, comparatively a new pesticide designed to eradicate lepidopteran insect pests is known to have low risk to birds, mammals, fish, algae, honey bees, non-target arthropods, earthworms, soil macro- and micro-organisms, non-target plants as well as sewage treatment organisms; however, the risk assessment for aquatic invertebrates from metabolite could not be finalized wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015